

Gene therapies focused on patients with rare inherited retinal diseases (IRDs) Advanced pipeline built by & for patients

4Q2022

The Opus Approach: Fast and Efficient Retinal Gene Therapies

- Capitalize on key learnings from LUXTURNA
 - Dose, route of administration, immunosuppression protocols, timing of contralateral eye dose, functional vision endpoints, clinical designs
- Fit for use, not over engineered
 - Current AAV capsids delivered to the subretinal space is a tried and true method to get safe, effective, and durable gene transduction in the retina
- Manufacture using modern methods at a scale that makes sense
 - Low volume, high quality material

Jean Bennett, MD, PhD F.M. Kirby Professor of Ophthalmology University of Pennsylvania Co-founder and Board Member, Opus Genetics

Business Model with Large Potential

- IRDs account for up to 20% of all blindness in individuals 16-64⁽¹⁾
- 280+ genes to date have been associated with IRDs⁽¹⁾⁽²⁾
- Estimates as high as 430,000 patients in the US alone⁽³⁾
- Estimated 5.5 million affected worldwide⁽⁴⁾

- (1) Shughoury et al, Intl Ophtha Clinics 2021 doi: 10.1097/IIO.00000000000377
- (2) RetNet; University of Texas Houston https://sph.uth.edu/retnet/
- (3) Gong et al, Clin Ophth 2021
- (4) Hanany et al, PNAS 2020 www.pnas.org/cgi/doi/10.1073/pnas.1913179117

Opus Genetics at a Glance: Today

Overview	 Team of 19 with plans to grow modestly upon reaching R&D milestones Extensive network of experienced consultants Offices and labs at Alexandria Launch Labs at 8 Davis Drive in Research Triangle Park
Major Collaborators	 Founders: Penn (Dr. Jean Bennett, Junwei Sun); Harvard (Dr. Eric Pierce) Foundation Fighting Blindness National Resilience, ThermoFisher, Dark Horse Consulting
Funding to Date	 \$19 million seed financing Led by RD Fund; participation from Manning Family Foundation and BIOS Partners Seed funding through early 2023 gets first program in the clinic and builds company

Opus Initial Pipeline

Genetic Target	Research/ Pre-Clin	IND Enabling	Phase 1/2	Phase 2/3	Delivery ⁽¹⁾	Prevalence US, Est ⁽²⁾	Key Milestones
LCA5	OPGx-001				AAV8 PR	~200	• IND late 2022
RDH12	OPGx-002				AAV8 PR	~1,100	• IND early 2024
NMNAT1	OPGx-003				AAV9 PR	~750	• IND late 2025

Multiple additional programs are in internal development and in active discussions for in-licensing

(1) All programs employ subretinal injection. PR = photoreceptor cell target.

11/28/2022 (2) Based on current published estimates in literature. *PNAS, Hanany et al 2020, Ophthalmology, Stone et al 2017*

C

A Pipeline Stack of IRD Treatments

Executive Management Team

Scientific Advisory Board

Jean Bennett, M.D., Ph.D.

Eric Pierce, M.D., Ph.D.

Radha Ayyagari, Ph.D.

Sanford Boye, M.S.

Clinical Advisory Board

Daniel Chung, D.O.

Elise Heon, M.D., FRCSC

Bart Leroy, M.D., Ph.D.

6

Relationship with FFB Further Strengthens the Opus Strategy

FIGHTING RD FUND

FOUNDATION FIGHTING BLINDNESS My Retina Tracker® Registry

Prevalence Estimates

Natural History / Window of Intervention

Efficient Clinical Trial Execution

Opus as BD Partner of Choice

Leverage Across Ecosystem

Opus Investment in Uni-Rare Natural History Study

- Universal Rare Gene Study: A Registry and Natural History Study of Retinal Dystrophies Associated With Rare Disease-Causing Genetic Variants (Uni-Rare), <u>ClinicalTrials.gov Identifier: NCT05589714</u>
- 40 site, global study
 - registry open to all genes on RD Rare Gene list
 - natural history study open on by-gene basis
 - unifying goal of developing sensitive and reliable outcome measures
- Conducted by FFB's Clinical Consortium
- Coordinated by Jaeb Center for Health Research (JCHR)
- Opus funding will cover a portion of costs for patients with specific IRDs within our pipeline who are enrolled in the natural history study

LCA5 – An Early-Onset Retinal Degeneration

Structural-functional dissociation

Uyhazi et al., IOVS 2020 Boldt et al., JCI 2011

Demonstrated Functional Rescue in Faithful Animal Model

IND submission late 2022

Uyhazi et al., IOVS 2020 Song et al., Mol. Ther. 2018

RDH12: Early Blindness Due to Defect in Visual Cycle Enzyme

IND submission early 2024

11/28/2022

NMNAT1: IRD Caused by Nuclear NAD⁺ Dysregulation

Healthy patient

NMNAT1 patient

NMNAT1 is required for nuclear NAD⁺ production and homeostasis

Gene augmentation therapy rescues retinal structure and function in NMNAT1 disease mouse model

Falk et al, Nature Genetics (2012) Greenwald et al., Molecular Therapy – Methods & Clinical Development (2020) Greenwald et al, Human Molecular Genetics (2021)

IND submission late 2025

Opus Investment Thesis: Fast and Efficient Retinal Gene Therapies

Unmet Medical Need Experienced Signif Opus & Partner Comm Teams Opport

Significant Commercial Opportunities

Small Scale Manufacturing

280+ genes that cause vision loss with no existing treatments Proven AAV delivery of gene therapies and efficient clinical development

De-risked

Pipeline

Gene therapy, rare disease, ophthalmology, retinal therapeutics Growing pipeline of 8+ focused and aligned IRD assets High quality small batch sizes

Currently Raising \$35M A Round:

- Funding through mid-2024
- Early clinical readouts for 2 programs
- On pace for at least 1+ IND per year
- Complete business development deals

. 6

Thank you!

Braydon RDH12

Bella RDH12

Abigail RDH12

